Volume no :
9 |
Issue no :
1
Article Type :
Scholarly Article
Author :
Ch.vasavi, J. Sai Charan, P. Avinash, T. Sai Kiran
Published Date :
April, 2025
Publisher :
Journal of Theoretical and Computational Advances in Scientific Research (JTCASR)
Page No: 1 - 13
Abstract : This study explores the use of machine learning (ML) to predict the energy demand of Battery Electric Buses (BEBs), aiming to improve the efficiency and sustainability of urban transportation systems. Electrification of city buses plays a critical role in achieving greener, more sustainable public transport. However, predicting energy demand accurately is a complex task that requires efficient methods for vehicle design and fleet management. Traditional physics-based models are often cumbersome and time-consuming, while data-driven machine learning models offer scalable and faster alternatives. This research proposes a novel ML-based methodology that predicts the energy economy of BEBs using real-world driving data, incorporating key features such as vehicle speed and passenger load. By leveraging these simplified input variables, the proposed model achieves over 94% accuracy in predicting energy demand, making it highly practical for real-world applications. The ability to accurately predict energy consumption helps optimize fleet operations, reduce operational costs, and enhance energy efficiency, benefiting manufacturers, fleet operators, and urban communities. Additionally, the simplicity of the input variables makes the system robust and adaptable, requiring minimal computational resources. This study demonstrates the potential of machine learning in the electrification of transportation systems, providing a pathway for cost-effective and energy-efficient urban mobility solutions that can contribute to the wider adoption of electric buses in cities globally. The proposed methodology presents a significant step toward transforming public transportation systems into more sustainable, environmentally friendly models of mobility.
Keyword Battery Electric Buses (BEBs), Energy Economy Prediction, Machine Learning, Data-Driven Models, Speed Profile Features, Sustainable Transportation, Fleet Optimization, Energy Consumption Modeling.
Reference:
  1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. International Journal of Computer Science and Information Technologies3(2), 3328-3333.
  2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)(pp. 819-822). IEEE.
  3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
  4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
  5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. Data Engineering and Communication Technology, 163.
  6. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. Journal of Algebraic Statistics13(2), 2749-2757.
  7. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In IOP Conference Series: Materials Science and Engineering(Vol. 981, No. 4, p. 042054). IOP Publishing.
  8. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT)(pp. 1-4). IEEE.
  9. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC)(pp. 1081-1087). IEEE.
  10. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. International Journal of Advanced Computer Science and Applications13(7).
  11. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors32, 101054.
  12. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. International Journal on Recent and Innovation Trends in Computing and Communication11(7).
  13. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. Handbook of Artificial Intelligence255.
  14. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG)(pp. 1-3). IEEE.
  15. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. Journal of Algebraic Statistics13(1), 159-168.
  16. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. Journal of Engineering Education Transformations30(3), 322-326.
  17. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. Journal of Electrical Systems20, 900-910.
  18. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. Journal of Theoretical and Applied Information Technology100(13).
  19. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. CSE, Anurag Group of Institutions, Hyderabad, AP, India.
  20. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. Journal of Engineering Education Transformations33, 179-184.
  21. Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, D., & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT)(pp. 988-992). IEEE.
  22. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child’s Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT)(pp. 1-4). IEEE.
  23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016(pp. 531-539). Springer Singapore.
  24. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
  25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In Data Engineering and Intelligent Computing: Proceedings of IC3T 2016(pp. 483-492). Springer Singapore.
  26. Balakrishna, G., & Moparthi, N. R. (2019). ESBL: design and implement a cloud integrated framework for IoT load balancing. International Journal of Computers Communications & Control14(4), 459-474.
  27. Balakrishna, G., Kumar, A., Younas, A., Kumar, N. M. G., & Rastogi, R. (2023, October). A novel ensembling of CNN-A-LSTM for IoT electric vehicle charging stations based on intrusion detection system. In 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS)(pp. 1312-1317). IEEE.
  28. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
  29. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering2(12), 6234-6240.
  30. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS)(pp. 1-4). IEEE.
  31. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In Journal of Physics: Conference Series(Vol. 1228, No. 1, p. 012052). IOP Publishing.
  32. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators’ neural network in financial sector. Multimedia Tools and Applications83(16), 48761-48797.
  33. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. Intelligent Decision Technologies17(4), 1265-1282.
  34. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. International Journal of Computing and Digital Systems14(1), 1-xx.
  35. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. Computational Economics, 1-34.
  36. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS)(pp. 1-8). IEEE.
  37. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. Journal of Engineering Education Transformations38.
  38. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification.  J. Intell. Syst. Appl. Eng11, 503-512.
  39. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In AIP Conference Proceedings(Vol. 2919, No. 1). AIP Publishing.
  40. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks. In Unmanned Aerial Vehicle Cellular Communications(pp. 225-251). Cham: Springer International Publishing.
  41. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT)(pp. 1088-1093). IEEE.
  42. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.
  43. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET’S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES)(pp. 738-741). IEEE.
  44. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1(pp. 247-257). Springer Singapore.
  45. Sravan, K., Gunakar Rao, L., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2023, July). Analyze the Quality of Wine Based on Machine Learning Approach. In International Conference on Data Science and Applications(pp. 351-360). Singapore: Springer Nature Singapore.
  46. Ramineni, K., Harshith Reddy, K., Sai Thrikoteshwara Chary, L., Nikhil, L., & Akanksha, P. (2024, February). Designing an Intelligent Chatbot with Deep Learning: Leveraging FNN Algorithm for Conversational Agents to Improve the Chatbot Performance. In World Conference on Artificial Intelligence: Advances and Applications(pp. 143-151). Singapore: Springer Nature Singapore.
  47. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)(pp. 2676-2681). IEEE.
  48. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In International Conference on Data Science and Applications(pp. 105-118). Singapore: Springer Nature Singapore.
  49. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., … & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. Journal of Theoretical and Applied Information Technology15(1).
  50. Prasad, D. V. R. (2013). An improved invisible watermarking technique for image authentication. International Journal of Advanced Research in Computer Science and Software Engineering3(9), 284-291.
  51. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. Elementary Education Online20(4), 1245-1245.
  52. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014(pp. 203-216). Springer India.
  53. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)5(4), 143-150.
  54. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT)(pp. 103-106). IEEE.
  55. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. arXiv preprint arXiv:2105.07855.
  56. Cheruku, R., Hussain, K., Kavati, I., Reddy, A. M., & Reddy, K. S. (2024). Sentiment classification with modified RoBERTa and recurrent neural networks. Multimedia Tools and Applications83(10), 29399-29417.
  57. Papineni, S. L. V., Yarlagadda, S., Akkineni, H., & Reddy, A. M. (2021). Big data analytics applying the fusion approach of multicriteria decision making with deep learning algorithms. arXiv preprint arXiv:2102.02637.
  58. Naveen Kumar, G. S., & Reddy, V. S. K. (2020). Detection of shot boundaries and extraction of key frames for video retrieval. International Journal of Knowledge-based and Intelligent Engineering Systems24(1), 11-17.
  59. Naveen Kumar, G. S., & Reddy, V. S. K. (2019). Key frame extraction using rough set theory for video retrieval. In Soft Computing and Signal Processing: Proceedings of ICSCSP 2018, Volume 2(pp. 751-757). Springer Singapore.
  60. Kumar, G. N., Reddy, V. S. K., & Srinivas Kumar, S. (2018). Video shot boundary detection and key frame extraction for video retrieval. In Proceedings of the Second International Conference on Computational Intelligence and Informatics: ICCII 2017(pp. 557-567). Springer Singapore.
  61. Pala, V. C. R., Kamatagi, S., Jangiti, S., Swaraja, K., Madhavi, K. R., & Kumar, G. N. (2023, March). Yoga pose recognition with real time correction using deep learning. In 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)(pp. 387-393). IEEE.
  62. Kumar, G. N., Reddy, V. S. K., & Srinivas Kumar, S. (2018). High-performance video retrieval based on spatio-temporal features. In Microelectronics, Electromagnetics and Telecommunications: Proceedings of ICMEET 2017(pp. 433-441). Springer Singapore.
  63. Nazeer, D. M., Qayyum, M., & Ahad, A. (2022). Real time object detection and recognition in machine learning using jetson nano. International Journal from Innovative Engineering and Management Research (IJIEMR).
  64. Ahad, A., Yalavarthi, S. B., & Hussain, M. A. (2018). Tweet data analysis using topical clustering. Journal of Advanced Research in Dynamical and Control Systems10(9), 632-636.
  65. Sagar, M., & Vanmathi, C. (2024). A Comprehensive Review on Deep Learning Techniques on Cyber Attacks on Cyber Physical Systems. SN Computer Science5(7), 891.
  66. Vanmathi, C., Mangayarkarasi, R., Prabhavathy, P., Hemalatha, S., & Sagar, M. (2023). A Study of Human Interaction Emotional Intelligence in Healthcare Applications. In Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence(pp. 151-165). IGI Global.
  67. Rao, P. R., & Sucharita, V. (2019). A framework to automate cloud based service attacks detection and prevention. International Journal of Advanced Computer Science and Applications10(2).
  68. Rao, P. R., Sridhar, S. V., & RamaKrishna, V. (2013). An Optimistic Approach for Query Construction and Execution in Cloud Computing Environment. International Journal of Advanced Research in Computer Science and Software Engineering3(5).
  69. Rao, P. R., & Sucharita, V. (2020). A secure cloud service deployment framework for DevOps. Indonesian Journal of Electrical Engineering and Computer Science21(2), 874-885.
  70. Senthilkumar, S., Haidari, M., Devi, G., Britto, A. S. F., Gorthi, R., & Sivaramkrishnan, M. (2022, October). Wireless bidirectional power transfer for E-vehicle charging system. In 2022 International Conference on Edge Computing and Applications (ICECAA)(pp. 705-710). IEEE.
  71. Firos, A., Prakash, N., Gorthi, R., Soni, M., Kumar, S., & Balaraju, V. (2023, February). Fault detection in power transmission lines using AI model. In 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS)(pp. 1-6). IEEE.
  72. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. Measurement162, 107885.
  73. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., … & Adigo, A. G. (2022). Machine learning‐based secure data acquisition for fake accounts detection in future mobile communication networks. Wireless Communications and Mobile Computing2022(1), 6356152.
  74. Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. Journal of medical systems42(11), 225.
  75. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. Journal of Computer Science6(5), 536.
  76. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International44(3), 18261-18271.
  77. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1603-1609). IEEE.
  78. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)(pp. 1-6). IEEE.
  79. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1631-1636). IEEE.
  80. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT)(pp. 1-5). IEEE.
  81. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS)(pp. 1-6). IEEE.
  82. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES)(pp. 1610-1616). IEEE.